
Improve Your App Ratings 
Using Machine Learning

Gianluca Segato

founder & lead Android dev @ Uniwhere

(つ◕౪◕)つ━☆ﾟ.*･｡ﾟ

gianluca@uniwhere.com



Agenda
stuff we’re going to talk about



• Context – What you should expect

• Stuff you’ll need

• Problem – What are we addressing?

• Workflow

• High level solution – The architecture

Agenda



Agenda

• Let’s code!
• Android

• Python

• Conclusions & Q&A



What you should expect

• How to deploy a ML system in the context of mobile application 
infrastructure (client-backend)

• An insight on how Firebase can partly get rid of a backend

What you shouldn’t expect

• A production-level deliverable: more like a MVP

• An academic-level Machine Learning implementation
-> for that there’s a 2-year Master’s Degree in Statistics



Do you want to rate my app?

Prompted after:

• 5 days of usage 

OR

• 12 app openings 

OR

• 5 days and 12 app openings

Never know when/to whom you should!

I would like to ask only those people that

I know are more likely to say yes.



In Uniwhere

• 80,000 users, 30% iOS, 65% Android, 5% WP

• Audience: University students

• Given that:
• Bad reviews happen because of issues

• Good reviews must be asked… otherwise people forget about it

• We wanted to improve our ratings by asking the right people at 
the right moment for a review



The problem

• Whom should I ask for a 
review?

• When should I ask for a review?

CLASSIFICATION PROBLEM



Machine Learning

•Supervised learning: using labeled data, trying to 
predict values

•Regression: real output (ie. a price)

•Classification: predict categorical data (ie. 0 or 1)



Output
What are we going to build?



Is this going to work?

• For Uniwhere, after 2 weeks in production: 88% accuracy

• The results were outstanding!
• Timing has little to no impact

• Usage features have a lot instead!

• And also does user profile data!



Feature Informativeness

0 0.5 1 1.5 2 2.5 3

x_days_since_first_open

x_webmail_taps

x_app_opened

x_calendar_taps

x_average_grade

x_academic_year

x_force_refreshes

x_years_over

x_grade_projections

x_goal_projections

x_ects_progress

x_channels_taps

x_exams_passed

x_ects_done



Formalization

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑢𝑠𝑒𝑟 = 𝒫 𝑢𝑠𝑒𝑟 𝑠𝑎𝑦𝑠 𝑦𝑒𝑠 𝑢𝑠𝑒𝑟, 𝑡𝑖𝑚𝑒)

𝑢𝑠𝑒𝑟 =
𝑥1 = pictures shared

…
𝑥𝑛 = game score

= 𝒙

We want to predict in advance whether a 

user will say yes to the question, based 

on his/her behavior and characteristics



Classification Algorithms

• Logistic Regression

• SVM

• Vanilla Neural Network

user
behavior

group = ቊ
0 = 𝑛𝑜
1 = 𝑦𝑒𝑠



Workflow

Gather data Pre-process
Features 

engineering
Training and 
evaluation

Deploy



A Two-Stage Process

• First stage: Model training
• gather data

• build the model upon it

• Second stage: Deployment of prediction model
• deploy the model

• adapt online (retraining at each step)



The System
architecture and stuff



Firebase

• Store and sync data in real time

• Both a:
• storage layer
• communication layer

• NoSQL approach: you represent data as nodes, without 
tables -> JSON

• Free up to a (high) point, and scalable



First Stage
Training



First Stage: Model Building

TIME

gather features from users label data

user 1

user 2

user 3

y1 | user 1, timing 1

y2 | user 2, timing 2

y3 | user 3, timing 3



First Stage: Model Training

(at a certain point)

𝒙 = [𝑥1, … , 𝑥𝑛 ]

𝑦



Model Building

if label_data == true, writes on

{userId}/y_observed

observes RemoteConfig label_data

writes features on {userId}/x_... 



Second Step
Deployed prediction model



Architecture

𝒙𝑡 𝒙𝑡

ℎ𝜃(𝒙𝑡)ℎ𝜃(𝒙𝑡)

when ℎ𝜃 𝒙𝑡
> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝐚𝐬𝐤

∀𝑡



Online Prediction and Re-training

𝑦 𝑦

re − train model



Implementation



Final System: Client Side

writes features on {userId}/x_... 

so that if action == 1 => ask

observes {userId}/action



Final System: Backend Side

observes {userId}/x_... 

in order to update 

{userId}/y_prediction
and {userId}/action

observes {userId}/y_observed

in order to update the model



Final System: Recap

sends x_... observes x_... 

updates y_pred
and actionobserves action

if 1, prompts
& updates y_obs

observes y_obs

updates the model



Stuff you’ll need

http://bit.ly/gdg-android-backend

http://bit.ly/gdg-android

Starting App Rep:

Python backend Rep:

pip install -r requirements.txt

https://pip.pypa.io/



Reference Slides



Issue: Precision and Recall

• If we take no action when y_prediction < threshold, then 
the system will never correct the model in case of false 
negatives (Type II error)

• In other words, the model update itself overtime just maximizing 
the precision by minimizing false positives (Type I errors), 
without touching the recall

Precision =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
Recall =

𝑡𝑝

𝑡𝑝 + 𝑓𝑛



Formalization

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

X
1

X2



Sigmoid Function

ℎ 𝑧 =
1

1 + 𝑒−𝑧
, 𝑧 = 𝜽𝑇𝒙



Sigmoid Function



Sigmoid Function

𝐽 𝜽 =
1

2𝑚
෍

𝑖=1

𝑚

𝐶𝑜𝑠𝑡(ℎ𝜃(𝑥
𝑖 ), 𝑦(𝑖))

𝐶𝑜𝑠𝑡(ℎ𝜃(𝑥
𝑖 ), 𝑦 𝑖 ) = ቐ

−log(ℎ𝜃 𝑥 𝑖 ) if 𝑦 = 1

−log(1 − ℎ𝜃 𝑥 𝑖 ) if 𝑦 = 0





Firebase

It was:

Now:


